Constructing N-soliton solution for the mKdV equation through constrained flows
نویسندگان
چکیده
Based on the factorization of soliton equations into two commuting integrable xand t-constrained flows, we derive N -soliton solutions for mKdV equation via its xand t-constrained flows. It shows that soliton solution for soliton equations can be constructed directly from the constrained flows.
منابع مشابه
Hamiltonian Curve Flows in Lie Groups G ⊂ U (n ) and Vector Nls, Mkdv, Sine-gordon Soliton Equations
A bi-Hamiltonian hierarchy of complex vector soliton equations is derived from geometric flows of non-stretching curves in the Lie groups G = SO(N + 1), SU(N) ⊂ U(N), generalizing previous work on integrable curve flows in Riemannian symmetric spaces G/SO(N). The derivation uses a parallel frame and connection along the curves, involving the Klein geometry of the group G. This is shown to yield...
متن کامل, mKdV , SINE - GORDON SOLITON EQUATIONS
A bi-Hamiltonian hierarchy of complex vector soliton equations is derived from geometric flows of non-stretching curves in the Lie groups G = SO(N + 1), SU(N) ⊂ U(N), generalizing previous work on integrable curve flows in Riemannian symmetric spaces G/SO(N). The derivation uses a parallel frame and connection along the curves, involving the Klein geometry of the group G. This is shown to yield...
متن کاملHamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type
The bi-Hamiltonian structure of the two known vector generalizations of the mKdV hierarchy of soliton equations is derived in a geometrical fashion from flows of nonstretching curves in Riemannian symmetric spaces G/SO(N). These spaces are exhausted by the Lie groups G = SO(N + 1), SU(N). The derivation of the bi-Hamiltonian structure uses a parallel frame and connection along the curve, tied t...
متن کاملBi-Hamiltonian operators, integrable flows of curves using moving frames, and geometric map equations
Moving frames of various kinds are used to derive bi-Hamiltonian operators and associated hierarchies of multi-component soliton equations from groupinvariant flows of non-stretching curves in constant curvature manifolds and Lie group manifolds. The hierarchy in the constant-curvature case consists of a vector mKdV equation coming from a parallel frame, a vector potential mKdV equation coming ...
متن کاملMultiple Soliton Solutions for a Variety of Coupled Modified Korteweg--de Vries Equations
Recently, many nonlinear coupled evolution equations, such as the coupled Korteweg–de Vries (KdV) equation, the coupled Boussinesq equation, and the coupled mKdV equation, appear in scientific applications [1 – 13]. The coupled evolution equations attracted a considerable research work in the literature. The aims of these works have been the determination of soliton solutions and the proof of c...
متن کامل